Article 13421

Title of the article

Lax representation with first-order operators for new nonlinear KdV-type equations 

Authors

Viktor M. Zhuravlev, Doctor of physical and mathematical sciences, leading researcher, Samara National Research University (34 Moskovskoye highway, Samara, Russia); professor of the sub-department of theoretical physics, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), zhvictorm@gmail.com
Vitaliy M. Morozov, Junior researcher, Samara National Research University (34 Moskovskoye highway, Samara, Russia), aieler@rambler.ru

Index UDK

530.182, 53.01, 51-71 

DOI

10.21685/2072-3040-2021-4-13 

Abstract

Background. In this work, a new representation is constructed for equations of the Korteweg-de-Vries (KdV) type. The proposed approach allows to obtain a universal Lax representation for a set of nonlinear partial differential equations, for which such a representation was not previously known. Materials and methods. The construction of the Lax representation for the new equations is based on the reduction of the general compatibility condition for two nonlinear first-order equations with a polynomial dependence on the unknown function. Results. A new general scheme for calculating the Lax representations in the form of two linear operators of the first order with a spectral parameter for the set of 1 + 1 equations integrable using the inverse problem method is obtained in this work. Infinite series of differential conservation laws for these equations are calculated and a special type of Bäcklund transformations for them is indicated. Conclusions. For a whole class of equations of the KdV-type, there is a general form of Lax representations that allows the inverse problem method to be applied to them. 

Key words

Lax representation, conditions for the compatibility of nonlinear first-order equations, conservation laws, Bäcklund transformations 

 Download PDF
References

1. Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskiy L.P. Teoriya solitonov: metod obratnoy zadachi = Soliton theory: inverse problem method. Moscow: Nauka, 1980:319. (In Russ.)
2. Lamb G.R. Becklund transformations at the turn of century. Lecture Notes in Mathematics. Springer, 1976:515.
3. Lem Dzh.L. Vedenie v teoriyu solitonov = Introduction to the theory of solitons. Moscow: Mir, 1983:294. (In Russ.)
4. Bullafa R., Kodri F.M. (eds.). Solitony = Solitons. Moscow: Mir, 1983:408. (In Russ.)
5. Zhuravlev V.M. Models of nonlinear wave processes allowing solitonic solutions. Zhurnal eksperimental'noy i teoreticheskoy fiziki = Journal of experimental and theoretical physics. 1996;100(6):2243–2263. (In Russ.)
6. Zhuravlev V.M. Nelineynye volny v mnogokomponentnykh sistemakh s dispersiey i diffuziey = Nonlinear waves in multicomponent systems with dispersion and diffusion. Ulyanovsk: Izd-vo UlGU, 2001:252. (In Russ.)
7. Zhuravlev V.M. The Cole-Hopf generalized substitution method and new examples of linearizable nonlinear evolution equations. Teoreticheskaya i mate-maticheskaya fizika = Theoretical and mathematical physics. 2009;158(1):58–71. (In Russ.)
8. Zhuravlev V.M. Nelineynye integriruemye modeli fizicheskikh protsessov. Metod funktsional'nykh podstanovok = Nonlinear integrable models of physical processes.
Functional substitution method. Ulyanovsk: Izd-vo UlGU, 2020:182. (In Russ.)
9. Laks P.D. Integrals of nonlinear evolutionary equations and solitary waves. Matematika = Mathematics. 1969;13(5):128–150. (In Russ.)
10. Burtsev S.P., Zakharov V.E., Mikhaylov A.V. Inverse problem method with variable spectral parameter. Teoreticheskaya i matematicheskaya fizika = Theoretical and mathematical physics. 1987;70(3):323–341. (In Russ.)
11. Svinolupov S.I., Sokolov V.V. Evolution equations with nontrivial conservation laws. Funktsional'nyy analiz i ego prilozheniya = Functional analysis and its applications. 1982;16(61):86–87. (In Russ.)
12. Sokolov V.V., Shabat A.B. Classification of integrable evolution equations. Mathematical physics reviews. 1984;4:221–280.

 

Дата создания: 19.01.2022 11:18
Дата обновления: 19.01.2022 13:45